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W. L. Briggs, A. C. Newell, and T. Sarie (.I. Comput. Phys. 51, 83 (1983)) have studied non- 
linear instabilities in discretisations of the equation U, + (u + U) U, = 0, where U is a constant. 
They demonstrated that solutions of leap-frog discretisations of this equation could be 
destabilised by a dynamical process which can localise noise on the spatial grid. D. M. Sloan 
and A. R. Mitchell (J. Comput. Phys. 67 (1986)) examined these instabilities by considering 
perturbations of the basic solution which take the form of side-band Fourier modes. Here 
this latter work is extended to cover analogous discretisations of the Korteweg-de Vries 
equation. % 1988 Academic Press, Inc. 

1. INTR~DuCT~~N 

A recent paper by Briggs, Newell, and Sarie [Z] described a mechanism whit 
produces instabilities in nonlinear partial difference equations. Their ideas were 
illustrated by considering leap-frog discretisations of the nonlinear equation 

u,+(u+ U)u,=O, (1.1) 

in which U is a constant, and basic solutions were considered which satisfy t 
periodic boundary condition 

u(x + 1, t) = 24(x, t). 61.2) 

To solve the problem in 0 <x < 1 this region was discretised using a grid size 
h = l/J, where J is an even integer. The basic solutions used were those which con- 
tain a small number, say N, Fourier modes of the form exp(27lijpl.Q j = 0, 1, . . . . 9, 
where p is an integer satisfying IpI <J/2. U in (1.1) may be regarded as a constant 
solution of the inviscid Burgers equation, and the periodic solutions are then 
perturbations about this constant state. If the constant state is characterised by a 
parameter c1 and if the energy in the perturbation is characterised by a parameter E, 
it is possible to find regions in (a, E) space within which an N-mode basic solution 
appears to be stable. Briggs et al. [2] have shown that the basic solutions are 
actually destabilised by long wavelength disturbances. As the instability grows t 
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basic solution is modulated and Fourier side-bands of the basic N modes draw 
energy from these basic modes. This dynamical process concentrates energy at 
certain locations on the spatial grid and the solution quickly becomes unbounded. 

Sloan and Mitchell [7] examined the same model using an approach related to 
that adopted by Benjamin and Feir [ 1 ] in their analysis of wavetrain instabilities in 
deep water. Numerical experiments performed by Sloan and Mitchell [7] 
confirmed that the side-band growth is related to the leap-frog discretisation of the 
time variable. They also indicated that instabilities develop on a long time scale. 
This notion has subsequently been developed by Cloot and Herbst [3] who 
performed a multiple scales analysis to show that the instabilities are caused by a 
resonance effect introduced by the discretisations. Their analysis supports the 
observations made by Briggs et al. [2] and by Sloan and Mitchell [7]. 

In this note the work by Sloan and Mitchell [7] is extended to the Korteweg- 
de Vries (KdV) equation. We consider the N-mode solution for N= 1 only. 
Experiments show that the dispersive term can have a stabilising or a destabilising 
effect, depending on the circumstances. For example, when the constant U in 
Eq. (1.1) is zero the l-mode solution is always unstable. This result was first 
obtained by Fornberg [.5] and discussed further by Sloan and Mitchell [7], Here it 
is shown that stable l-mode perturbations about the zero state are possible for the 
KdV equation. Furthermore, Sloan and Mitchell [7] observed no side-band 
growth in the semi-discrete form of (1.1) and their observations were confirmed by 
the multiple scales analysis of Cloot and Herbst [3]. For the KdV equation, 
however, it is shown here that the semi-discrete system may exhibit side-band 
growth. 

2. ~-MODE EQUATIONS 

2.1. Difference Equations 

Here we consider the perturbed KdV equation 

u,+(u+ U)Ux+EU,,,=O, (2-l 1 

where U and E are constants and u(x, t) satisfies the periodicity condition (1.2). A 
leap-frog discretisation on a grid with time step k and space step h = l/J is 

+Bcu;+*- 2u~,,+2ujn-,-u;-J=o, (2.2) 

where U; approximates u($z, nk), y = k/h, CI = yU, p = y&/h2 and the real parameter 0 
satisfies the constraint 0 < 8 < 1. Scheme (2.2) is used forj= 1, 2,..., J, n 2 1, and the 
periodicity condition is imposed in the form 
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Equations (2.2) and (2.3) satisfy the invariance conditions given in Sloan and 
Mitchell 171: in particular, if 0=$, we have 

i UT U,” + l= constant, 
j=l 

n 3 0. (2.4) 

This near-conservation condition suggests that 3 might be an appropriate value for 
the parameter 8. 

It is readily shown that UJ’ = 5” exp(2xijp/J), 0 <p < J/2 is a stable solution of the 
linear portion of (2.2) if 

Ill = (sin q) ICI + 2 /?(cos r - l)i < 1, where q = 27cp/J. 62.5) 

<” may then be written as exp( - ind), and (b E R assumes one of the values 

(2.6) 

It may be shown that a convenient sufficient condition for linear stability, derived 
from (2.5), is that 

where a and p are assumed to be non-negative. This condition has been considered 
by Sanz-Serna [6]. 

2.2. l-Mode Equations and Their Stability 

The semi-discrete form of (2.1) may be written as 

(i,+$ [(Uj+l)2-(Uj-,)2]+& [(l-e) Uj-t- U][Uj+,-Uj-I] 

where U,(t) is an approximation to u(jh, t) and the dot denotes differentiation wit 
respect to t. The l-mode solution of (2.8) has the form 

vi(t) = A(t) exp(2rcnij/3) +A*(t) exp( -2zij/3), (2.9) 

where A(t) and its complex conjugate A*(t) satisfy 

A(t)+p(?-3&4*2(t), (2.10) 
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A midpoint rule discretisation of (2.10) gives the difference equation 

ij? 
A(n+1)-A(n-1)+ifivA(n)=ly(2-38)A*2(n), (2.11) 

where v = 0: - 3p and A(n) is an approximation to A(t) at t = nk. This is an exten- 
sion of the l-mode system used by Briggs et al. [2] and Sloan and Mitchell [7] for 
the inviscid Burgers equation. 

A precise description of the nonlinear stability threshold was given by Sloan and 
Mitchell [7] for the semi-discrete l-mode system. The analysis is readily applied to 
the KdV equation. If A(t) = X(t) + iY(t), Eq. (2.10) may be written as a pair of real, 
nonlinear equations in X and Y. The integral curve pattern of these equations is 
similar to that given as Fig. 1 in [7], and there it is shown that the system is stable 
if the initial value of A = (X, Y) is strictly inside a specified triangle PQR in the 
(X, Y) plane. The coordinates of P, Q, and R are (N, 0) and (-N/2, +,,6N/2), 
where 

(2.12) 

Stability constraints have been considered fully in Sloan and Mitchell [7] for the 
case E = 0. Here we need only mention modifications introduced by the introduction 
of non-zero E. Note also that the stability analysis for the semi-discrete system gives 
guidance concerning the stability region for the fully discrete system (2.11). An 
essential requirement in the latter case is that the discrete approximations A(O), 
A(l), A(2), s-1 should remain inside the aforementioned triangle PQR. As in Sloan 
and Mitchell [7] the stability of (2.11) was investigated by solving the difference 
equation using starting values A(0) = A( 1) = G( 1+ i), where 0 is a positive constant 
and ((T, 0.) is in triangle PQR. The maximum norm of the initial data is 

E=(T($+ 1) (2.13) 

and this is used as a measure of the initial energy in the l-mode solution. To obtain 
the stability threshold for given a and /?, Eq. (2.11) was integrated using increasing 
values of E until we found the maximum E at which the solution remained bounded 
over 2 x lo4 time steps. 

Note that any comments on the nonlinear stability of (2.11) should be restricted 
to the parameter range ICY - 3bl <2/d, within which (2.11) is linearly stable. This 
stability limit is precise at 8 = $. In general, (2.11) becomes unstable at lower values 
of Ia - 3/?I and experiments by Sloan and Mitchell [7] have shown, for example, 
that at 8 = 0 stability holds only if 

ICI - 381 < 1. (2.14) 
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It is readily shown, using the stability triangle defined at (2.12), that the semi- 
discrete system (2.10) is nonlinearly stable under the condition 

E<N, if N>O; 

E<(l+$-N) 
2 2 if N c 0. 

(2.15) 

Here N is conveniently defined as N= (a - 3p)/l- +O) = v/(1 - SO), if we assume, as 
in Sloan and Mitchell [7], that y = k/h = 1. 

Inequalities (2.15) enable us to determine the effects of variations in 0, OT, or b on 
the stability threshold for the l-mode semi-discrete system. If v > 0, for example, the 

o-0 O’S L/3 

FIG. 1. Variation of the stability threshold with B for the l-mode system. Unbroken curve gives 
semi-discrete threshold and x gives fully discrete threshold. (a) corresponds to GI = 1, p = 0.2 (v > 0) and 
(b) corresponds to a = 1, /3 = 0.5 (v <: 0). 
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threshold energy is v at 8 = 0 and (1 + a) v at 8 = 1: it rises from each of these 
values to infinity as 0 approaches the value 3. If v < 0 the values at 8 = 0 and 8 = 1 
are, respectively, (1 + J5)( - v)/2 and -2v and from each of these it rises as 19 
approaches 3. The unbroken curves in Fig. 1 show the variation with 8 of the 
stability threshold for the l-mode semi-discrete system. The profile in Fig. la 
corresponds to parameter values 01= 1, jI = 0.2 and it shows the variation when 
v > 0. Figure lb corresponds to a = 1, /I = 0.5 and it shows the situation when v < 0. 
The variation of the stability threshold with 0 was checked numerically for the 
fully- discrete system (2.11). The profile was found to be qualitatively similar to the 
semi-discrete profile, but the fully discrete profile is lower. Fully discrete threshold 
values are marked x in Figs. la, b for the values of M and B specified in the semi- 
discrete case. Note, for example, that at c1= 1, p = 0.2 the semi-discrete and fully 
discrete threshold values are 0.4 and 0.28, respectively, at 0 = 0. 

In the semi-discrete case the variation of the threshold profile with a is par- 
ticularly simple. The unbroken curves in Figs. 2a and b show the semi-discrete 

FIG. 2. Variation of the stability threshold with a for the l-mode system. Unbroken curve gives 
semi-discrete threshold and x gives fully discrete threshold. (a) corresponds to 0 =O, B =0.2 and 
(b) corresponds to tJ = 1, p = 0.2. 
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profiles for 6’ = 0 and 8 = 1, respectively. In each case p = 0.2 and the variation wit 
01 is shown for 0 < CI < 3fi + 2/d ( = a,). One notes that if fi E (0,2/3 ,/5) and [x IS 
restricted to this range then Ia - 3pI <2/d and (2.11) is linearly stable. The 
figures show that the semi-discrete threshold is a piecewise linear function of a, wit 
the value zero at tl = 3p. Numerical experiments with Eq. (2.11) have shown that 
the threshold profile in the fully discrete case is qualitatively similar as a increases 
from zero to the value 38. As CI increases beyond 3j3, however, the threshold rises 
before it falls rapidly to zero. This deviation from the behaviour of the semi-discrete 

RIG. 3. Variation of the stability threshold with /? for the l-mode system. Unbroken curve gives 
semi-discrete threshold and x gives fully discrete threshold. (a) corresponds to B =0, o! = 1 and 
(b) corresponds to 0 = 1, a = 1. 
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profile occurs as the stability limit (2.14) is approached. For example, with 6 = 0 
and p = 0.2 the threshold falls from 0.32 to zero as a increases from 1.4 to 1.6. Fully 
discrete values are marked x in Figs. 2a, b. 

The piecewise linear variation of the semi-discrete threshold with p is given by 
the unbroken curves in Fig. 3. The cases 8 = 0 and 19 = 1 are displayed in Figs. 3a 
and b, respectively: in each case CI = 1 (a < 213) and /I is in the range 
0 d /I d a/3 + 2/3 fi ( =/I,). The fully discrete values are seen to fall to zero as the 
limit (2.14) is approached. Note that the more restrictive condition (2.7) is violated 
in Figs. 2 and 3. 

The stability of the l-mode system for the KdV equation differs in one significant 
way from that of the inviscid Burgers equation. For the latter, any perturbation 
about zero with spatial frequency 3h is unstable: this has been discussed by 
Fornberg [S], among others. For the KdV equation we see that at c( = 0 and 8 = 0, 
for example, the semi-discrete l-mode system is stable if E < 3/I( 1 + fi)/Z. This 
stability at CI = 0 holds for the fully discrete equation (2.11), as shown in Fig. 2a, 
and also for the partial difference scheme (2.2) and (2.3). The latter was integrated 
using 8 = 0, y = 1, /I = 0.2, and J= 60, with initial conditions given by (2.9) and 
A(0) = A( 1) = G( 1 + i). The limiting threshold energy was found to be in the inter- 
val EE (0.35, 0.36). The scheme has therefore been stabilised to 3h perturbations 
about zero by the dispersive term. 

3. SIDE-BAND EQUATIONS 

As shown in Sloan and Mitchell [7], if the l-mode solution of (2.8) is perturbed 
by Fourier components close to the fundamental the perturbed solution to first 
order is 

U.=AeiPj+A*e-iPj+a_ei(~-s)j 
J 

+a* e-i(P-6)j+u+ei(P+S)j+u*, e-i(p+6)j 

+ bei@+ b* e-iG, (3.1) 

where each of the coefficients depends on t, and p = 2~13, 6J= 2np, with p typically 
a small positive integer. If we substitute (3.1) into (2.8) and ignore squares of small 
terms such as a + (t), we obtain the linearised system 

6- + S’(6) a- + i(K(6) Ab* -M(6) A*a*,) = 0, 

ci+ +iF(-@a+ +i(K(-6)Ab-M(-d)A*u*_)=O, (3.2) 

6+iL(6)b+i(N(6)Au~ -N(-d)A*u+)=O, 



MODULATIONAL INSTABILITIES IN DISCRETE KDV 175 

where 

M(6)=& I--+fi cos 6 - sin 6 - fi 8(2 60s 6 + l)], 

N(6)=& c&-J;; cos 6 - sin 6 + 0(3 sin 6 + ,/j cos 6 - &)I 

and 

U-2(1-cos6)-f- 
I h2 ’ 

Any growth of the side-band perturbations introduces a modulation whit 
replaces the constant envelope of the basic solution by a periodic funetion o 
wavelength l/h. Nonlinear interactions introduce additional Fourier modes, o 
course, and the clarity of the modulation will depend on the energy distribution 
over the Fourier modes. This effect is clearly noticed on Figs. 5c and 7c of Sloan 
and Mitchell 171 which show, respectively, a l-mode and 2-mode solution of (2.8) 
with side-band perturbations. In the l-mode case, where the modulation is not 
distinct, only 18.8% of the total energy remains in the basic solution and side-ban 
modes represented by (3.1). In the 2-mode case, however, where modulation is 
distinct, 95.1% of the total energy remains in the basic solution and side-band 
modes. Note that the system is not conservative and the total energy is not time- 
independent. 

The growth in modulations in a perturbed l-mode basic solution of the semi- 
discrete system (2.8) will depend on the growth of solutions of (3.2). Any 
modulational instability will develop on a slow time scale, and the presence of 
dicerent time scales may be observed if A(r) is given by the linear part of (2.10) as 

A(t) =a, ciwg, (3.31 

where w = ,+/? (U - 3z/h2)/2h. I we let h -+ 0 with p fixed, 0 = 0, and E = 0(/z’), the f 
limiting form of (3.2) is 

- 2a$ a*, f?‘) = 0, 

@(aobe-i~t-2a* a* eiw’)-o ci+ +iwa+ + 2h 0 - 2 (3.4) 

6 + if2b - rcpi(a,a* e-j”‘+ 62; a + eiw2) = 0, 

581/79/l-12 
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where Sz =27-&J. It may now be seen that the solution of (3.4), and hence of (3.2), 
evolves on a fast time scale T= cot and also on a slow time scale z = Qt. Additional 
time scales may be introduced by making assumptions concerning the orders of 
magnitude of A(t) and E in relation to h. The analysis of this problem is now being 
considered by the author and it will be reported in due course. 

To check for modulational instabilities in the inviscid Burgers equation (1.1) 
Sloan and Mitchell [7] integrated the analogue of system (3.2) over a large range 
of the slow time scale. Their experiments suggested that if the initial conditions on 
the basic l-mode solution satisfy the stability condition (2.15) then the semi-discrete 
system corresponding to (1.1) does not permit side-band growth. Cloot and Herbst 
[3] have subsequently used a multiple scales analysis appropriate to a weakly 
nonlinear system to support the observations of Sloan and Mitchell [7]. It is of 
some interest, therefore, to examine the possibility of side-band growth for the 
semi-discretisation (2.8) of the KdV equation. In particular, one is interested in 
determining whether or not the presence of non-zero E alters the stability properties. 

We used an accurate integrator to solve (3.2) and (2.10) with parameter values 
J= 120, ,u = 3, 19 = 0, U = 0.6, and several values of E in the range 0 d E < 7.0 x 10e6. 
Initial conditions were chosen as A(0) = o(1 + i), a+(O) = 0.5 x 10e4(1 -t i), 
a_(O) = b(0) = 0, with E= 0.2 and c given in terms of E by (2.13). The basic 
solution corresponds to Fourier mode number 40 and the initial perturbation is in 
mode number 43. It is readily seen that for the given parameter values the basic 
solution is stable according to (2.15) and any nonlinear instability must therefore 
be due to the presence of the perturbation. 

Figures 4a, b, and c show the variations of the real parts of a, and b with time 
for E= 0, 4.5 x 10e6, and 6.5 x 10M6, respectively. The solutions are shown for an 
interval 06 t 6 T, where T has been chosen so that each figure shows 
approximately the same number of high frequency oscillations. The values of T in 
Figs. 4a, b, and c are 4.4, 6.3, and 7.7, respectively, and the figures have been scaled 
so that max,, G fG T { Ia + (t)l, /b(t)1 > = 1. The high frequency oscillation represents 
the oscillation in a, with period close to &-= 27c/IF(6)1, and the slower oscillation is 
the periodic variation of b with period close to R, = 27c/lL(6)1. The frequencies of 
these oscillations approach w and 52, respectively, as h -+ 0. Figure 4a shows that 
the high frequency oscillations of a, are modulated by a slowly varying envelope, 
and the profile of b suggests a periodic behaviour with period 61,. These variations 
on slower time scales arise from nonlinear interactions between oscillating com- 
ponents in the solution, and their presence indicates that any analysis of the 
modulational behaviour must involve several time scales. Figure 4b shows that as E 
increases from zero there is an increase in A,, and the modulations on the high fre- 
quency waves are more distinct. Figure 4c indicates that as E is further increased 
there is side-band growth and an instability develops on a slow time scale. At E = 0 
the maximum value of (a, (t)l for 0 d t < 7.7 is 0.99 x 10P4, and at E = 6.5 x lop6 the 
maximum value of la+(t)] in this interval is 0.013. The result of interest is that the 
introduction of a non-zero dispersion coefficient yields a semi-discrete system which 
permits modulational instabilities. 
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FIG. 4. Variation of real parts of 0, and b with time given by the accurate solution of (3.2) and 

‘1’ 

(2.10) with E=0.2, J= 120, p = 3, U = 0.6 and 0 =O. (at( c ) correspond to E= 0, 4.4 (-6), 6.5 (-6), 
and maximum times are 4.4, 6.3, and 7.7. 

To examine the effect of variations in E on the side-band growth for the fuhy 
discrete system we used a midpoint rule discretisation of (3.2), together with (2.1 I) 
and a time step given by y = k/h = 1. All parameters, except E, were assigned as in 
the above semi-discrete calculations, and the same initial conditions were now 
imposed at time steps IZ = 0, 1. Computed solutions using this scheme could equally 
be obtained by Fourier decomposition of appropriate leap-frog solutions of (2.2). 
Figures 5a, b, and c show the variations of the real parts of a + and b with time for 
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1 C 

FIG. 5. Variation of real parts of a, and b with time given by the midpoint rule solution of (3.2) and 
(2.10) with E=0.2, J=120, ~=3, U=O.6, B=O, and y=l. (a)-(c) correspond to E=O, 3.3 (-6), 3.4 
(- 6), and maximum time is 3.2 in each case. 

E = 0, 3.3 x 10e6, and 3.4 x 10-6, respectively, and each figure covers the same time 
interval 0 < t ,< 3.2. The maximum values of la+ 1 over this range of integration are 
0.50 X 10e3, 0.65 x 10P2, and 0.40 x 10-l for the three values of E, and these values 
indicate that the growth rate increases with E. In the fully discrete system the 
introduction of E has increased the strength of the modulational instability. 

It is of interest to examine the effect of initial conditions on the side-band growth. 
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Accordingly, the calculation which produced Fig. 5a was repeated with a change 
only in the initial conditions at t = k. The solution of the linear part of (2.11) 
enables us to write A( 1) = A(O) exp( -icp), where cp is one of the values given by 
(2.6). The solution mode associated with the value ~0 = cpl is the principal mode and 
that associated with cp = cpz is a parasitic mode which arises from the two-step 
nature of the time discretisation. Figures 6a and b show the variations of the real 
parts of a+ and b, with conditions at t = k based on the principal and parasitic 
modes, respectively. As before, each figure is scaled and the time interval is 
0-G t < 3.2. The figures show clearly that the growth rate is much stronger with the 
parasitic mode than with the principal mode. The result agrees with the analysis of 
Cloot and Herbst [3] who conclude that the parasitic mode is one of the prima 
sources of modulational instability in leap-frog discretisations of (1.1). 

Cloot and Herbst [4] have recently analysed modulational instabilities of t 
KdV equation using an approach analogous to that which was previously appli 
to the inviscid Burgers equation [3]. Their analysis examines resonances 
introduced by the discretisations and it investigates conditions under which these 
resonances can give rise to instabilities. For example, they consider the semi- 
discrete system on the interval [0,2n] and they examine the stability of solutions of 
the form 

uj(t)=z[ei’k”l-“““+(*)] +O(z2), z< 1, (3.5) 

FIG. 6. Variation of real parts of a + and b with time given by the midpoint rule solution of (3.2) and 
(2.10) with E=0.2, J= 120, p =3, U=O.6, 0=0, y = 1, and E =O. (a) and (b) correspond to principal 
and parasitic modes in initial conditions, and maximum time is 3.2 in each case. 
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where (*) denotes the complex conjugate and the frequency, ok, of mode k is given 
by the linearised dispersion relation 

w,=gsinkH+ $$f (sin 2kH - 2 sin kH). 

Here H = 2nh, and this gives the mesh spacing on the interval [0,2n]. They obtain, 
inter alia, conditions under which resonance between the modes k + p, k - p, and p 
will give rise to instability: the analysis shows that side-band modes will grow, and 
instability will occur, if z exceeds a limiting value, zsB. Details will be given in their 
forthcoming paper and to indicate the relevance to the present study it will suffice 
here to refer to results for k = J/3 and 8 = 0, when the three modes become those 
with coefficients a + , a-, and b in Eq. (3.4). For the data used to produce Fig. 4 it 
may be shown that zsB decreases as E increases through the values used in Figs. 4a, 
b, and c. This suggests that the semi-discrete system is destabilised to modulational 
instabilities as the dispersion coefficient, E, increases from zero and it gives some 
support to the results presented here. 

Cloot and Herbst [4] also show that additional resonance conditions also arise if 
the dispersion coefficient, E, assumes certain values. At k = J/3, for example, one of 
these values is $Uh* which corresponds to the degeneracy of the stability triangle 
PQR as defined by (2.12). This additional resonance condition may be sufficient to 
induce side-band growth as E approaches the value f Uh*. Numerical results will be 
presented in [4] to show the possible destabilising effects of the dispersive term in 
the semi-discrete and fully discrete situations. 

4. LEAP-FROG DISCRETISATION OF (2.1) 

The integrations described in the preceding section involved only those Fourier 
modes which are stimulated by first-order interactions between a basic l-mode 
solution and a perturbed side-band mode. A solution of the complete partial 
difference equation (2.2) may contain all Fourier modes of the form exp( &2nijp/J), 
j= 0, 1, . ..) J, where the mode number p is in the range 0 <p <J/2. The l-mode 
initial conditions for (2.2) at t = 0, k are given by (2.9) with A(O) = A(1) = a( 1-t i) 
and (T given by (2.13). .To stimulate a side-band at mode number p we add 

2c[cos(27r,jp/J) - sin(2rtjp/J)] 

to node j, where j= 0, 1, . . . . J and c is a small positive number. As before, the 
stimulated mode is at p = J/3 + p. 

Several observations were made by Sloan and Mitchell [7] concerning the 
growth of side-band modes for Burgers equation. It was noted, for example, that 
the modulation envelope is more distinct in some cases than in others, and in the 
preceding section of this paper it was pointed out that the clarity of the modulation 
is influenced by the spread of energy over additional modes. In this section it is of 
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interest to examine the effect of the dispersive term on the strength of side-band 
growth and on the spread of energy to other modes. 

Equation (2.2) was integrated using the parameter values E = 0.2, J = 120, p = 3, 
U=O.6, 8=0, y= 1, c=O.5x lob4 with s=O and &=3.4x 10F6. This is t 
parameter set used in the side-band equations for the calcufations displayed m 
Figs. 5a and c. Numerical results confirm that the initial growth rate of the 
instability is greater for the non-zero value of E. This difference in growth r 
continues as the instability develops, and at n = 220 the magnitudes measured in 
maximum norm /U”Ij m =maxi 1 U;j are 0.12 x 10’ and 0.19 x IO4 for E = 0 an 
E = 3.4 x 10e6, respectively. The solution profiles, scaled so that Ij U’jj ocI = I, are 
shown in Figs. 7a and b. The solutions appear to be approaching the forms U,! z TC, 
u 1+1-- - -)c, Uj = 0 for j # 1, I+ 1, where 1 is a positive integer and JC a real positive 
number. Vadillo and Sanz-Serna [S] have shown that this is the least sta 
solution of the leap-frog discretisation of the inviscid Burgers equation. 

FIG. 7. Solution of (2.2) at step 220 with E=0.2, J=120, p=3, iYJ=O.6, B=O, y=l, and c=O.5 
(-4). (a) and (b) correspond to E = 0 and E = 3.4 (-6). 
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At time step n in the solution of (2.2) the Fourier coefficient associated with 
mode p is 

u(p, n) = f It’ (J; e -%iplJ, 
J J 

J=o 
-z<P<2, 

and the total energy, s(n), is given by 

(4.1) 

To measure the spread of energy brought about by second-order, nonlinear 
interactions we define the secondary energy, gs(n), as in (4.1), with the summation 
restricted to modes not represented in (3.1). Equation (2.2) was integrated using the 
parameter values E = 0.2, J= 120, ,u = 3, 13 = 0, y = 1, c = 0.5 x lo-‘. To measure the 
effect of variations of /3 on the spread of energy to secondary modes we computed 
the ratio J?Jn)/B(n) for several values of CI and B satisfying the constraint 
a- 3p=O.9. There was no evidence that the rate at which energy spreads to 
secondary modes is greatly influenced by the value of p. At n = 120, for example, 
the above ratio has the values 0.29( -3), 0.43( -3), and 0.17( -3) for /I = 0, 0.01, 
and 0.02, respectively. Experiments performed with variations in 8 and fixed valued 
of a and B indicate that energy spread to secondary modes is likely to be minimised 
at e=+. 

5. CONCLUSIONS 

Numerical experiments show how the results reported by Sloan and Mitchell [7] 
are modified by the introduction of dispersion. It was shown in Section 2 that the 
leap-frog scheme is stabilised to 3h perturbations about zero by the introduction of 
a positive dispersion coefficient, E. One significant effect brought about by the 
dispersive term is that the semi-discrete system permits modulational instabilities. 
The observations by Sloan and Mitchell [7] and the analysis by Cloot and Herbst 
[3] indicate that such instabilities are not possible if E = 0. 

Experiments on the fully discrete side-band equations suggest that the introduc- 
tion of positive E increases the strength of side-band growth. Numerical evidence is 
also presented to support the conclusion by Cloot and Herbst [3] that the parasitic 
mode is a primary source of modulational instability. Observations on solutions of 
the complete partial difference equations show that energy spread over Fourier 
modes is not significantly altered by the introduction of positive E. 
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